您现在的位置是:首页 > 期货期货

赌博与投资系列之一:凯利公式

linx 2024-09-16 21:45:00 期货 已有人查阅

导读专业期货开户和期货培训学习网站,期货开户即送期货特色指标!提供免费期货入门视频教程,期货高手实战期货投资技巧,是期货交易投资者必看的网站!

 赌博与投资系列之一:凯利公式


凯利公式理解
凯利公式的数学推导及其复杂,需要非常高深的数学知识,所以在这里讨论也没有什么意义。哎,说白了其实就是我也看不大懂。在这里我将通过一些实验,加深大家对凯利公式主观上的理解。
我们再来看一个赌局。赌局2:你输和赢的概率分别是50%,例如抛硬币。赢的时候净收益率为1,即rw=1,输的时候净损失率为0.5,即rl=0.5。也就是说当你每赌一元钱,赢的时候你能再赢1元,输的时候你只要付出去5毛。
容易看出赌局2的期望收益是0.25,又是一个赌客存在极大优势的赌局。
根据凯利公式,我们可以得到每局最佳的下注比例为:
也就是说每次把一半的钱拿去下注,长期来看可以得到最大的收益。

下面我要根据实验得出平均增长率r的概念。首先来看实验,在第二列的胜负列中,实验会50%的概率产生1,表示盈利100%。50%的概率产生-0.5,表示亏损50%。第三第四列分别是在仓位为100%和50%下每次赌局之后所拥有的资金。
仔细对比可以发现结论一,亦即在经过相同次的局数之后,最后的结果只与在这些局数中赢的局数的数量和输的局数的数量有关,而与在这些局数中赢的局和输的局的顺序无关。 当然这个结论非常容易证明(乘法交换律,小学生就会),这里就不证明了,上面举的两个例子足够大家很好的理解。

那么既然最终的结果和输赢的顺序无关,那么我们假设赌局2如实验2.2一样进行下去,看下图:

我们假设赌局的胜负是交替进行的,由于结论一,从长期来看这对结果资金没有任何影响。


在自己观察图片之前我们先做一个定义。假设将某几局赌局视为一个整体,这个整体中各种结果出现的频率正好等于其概率,并且这个整体的局数是所有满足条件整体当中局数最小的,那么我们称这个整体为一组赌局。例如在上图的实验中,一组赌局就代表着进行两局赌局,其中赢一次输一次。
仔细观察上图中蓝色标记的数字,它们是一组赌局的结尾。你会发现这些数字是保持着稳定的增长的。当仓位是100%时,蓝色标记数字的增长率是0%,即一组赌局之后本金的增长率为0%。这也解释了当每次都满仓下注的时候,在赌局2中长期来看是无法赚钱的。当仓位是50%(即凯利公式得出的最佳比例)时,蓝色标记数字的增长率是12.5%,即一组赌局之后本金的增长率为12.5%。
这是一个普遍的规律,每组赌局之后的增长率与仓位有关。且每组赌局之后的增长率越大,那么长期来看最终的收益也就越多。

根据每组赌局的增长率可以计算出每个赌局的平均增长率g。在上面的图中,每组赌局之中包含两个赌局,那么每个赌局的平均增长率
其实这个r是可以通过公式算出来的。

从长期来看,想要让资本得到最大的增长,其实只要让r最大,也即让g最大化。而最佳下注比例f其实也是通过求解max(g)的出来的。
凯利公式其他结论——关于风险
上次说到,形势有利时如何下注很需要技巧。 押太少了浪费机会,押太多了“牺牲”的风险大增。 什么才是不多不少的合适赌注呢? 1956年,科学家凯利(John Kelly)就此发表了论文,提出了著名的凯利公式。

f* = (bp - q) / b         其中,f* = 投注金额占总资金的比例
p = 获胜的概率
q = 失败的概率,q = 1-p
b = 赔率,例如在轮盘赌中押单个数字,b = 35,押红黑,b = 1。

上篇中讲到的21点下注问题,假设总赌本10,000美元,玩家取胜的概率是51%,赔率1:1(实际胜率和赔率略有偏差,但相距不大),那么凯利公式给出的最佳赌注是:

$10000 * (1 * 0.51 - 0.49)/ 1 = $200
我知道很多人看到数学公式就头大,但要玩好赌博和投资没法不用到数学。 最重要的不在于带公式计算数字,而是要弄明白公式背后真正的“意思”。
首先,公式中分子的bp - q 代表“赢面”,数学中叫“期望值”(expectation),凯利公式指出:正期望值的游戏才可以下注,这是一切赌戏和投资最基本的道理,也就是前面讲的“没有把握,决不下注”。
其次,赢面还要除以“b”才是投注资金比例。 也就是说赢面相同的情况下,赔率越小越可以多押注。 这一点不容易直观理解,我们用个例子来说明。 下面三个正期望值的游戏,你看看选哪个:
1.      “小博大”:胜率20%,赢了1赔5,输了全光。bp - q = 5*20% - 80% = 20%
2.      “中博中”:胜率60%,1赔1。bp - q = 1*60% - 40% = 20%
3.      “大博小”:胜率80%,1赔0.5。bp - q = 0.5*80% - 20% = 20%
三个游戏的数学期望值一样,都是20%,或者说押100元平均赢20元。 按大部分国人的赌性,恐怕会选“小博大”游戏吧? 但是用凯利公式中的“b”一除,“小博大”游戏只能押总资金的4%,“中博中”可以押20%,“大博小”可以押40%。 赢钱速度“大博小”快多了!  前面不是讲过“久赌必赢的游戏应该选波动性小的”吗? 说的就是这个了。
现实中,爱玩“小博大”的多半是赌客。 谁爱玩“大博小”呢? 赌场! 华尔街的职业投资家们很多玩的也是“大博小”,因为便于使用杠杆(押大赌注)。 关于这点后面还要详细讲。
最后,凯利公式指明了风险控制的至关重要性:即便是正期望值的游戏也不能押太大的赌注。 从数学上讲,押注资金比例超过了凯利值,长期的赢钱速度反而下降,还会大大增加出现灾难性损失的可能性。 举个极端的例子,如果你每手都押上全部资金,那么不管你赢过多少钱,只要输一次就立刻破产。正所谓:辛辛苦苦几十年,一夜回到解放前。
为什么投资界赔到倾家荡产的尽是一些局部技术不错的老手呢? 原因多半在“赌注太大”。 上世纪初有位大宗师级别的投机客一世英名就毁在了这上面。

本文标签:

很赞哦! ()